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We propose a mechanism whereby a finite correlation length associated with the periodicity of
the crystalline lattice gives rise to incoherent Bragg reflection of quasiparticles. This introduces an
additional effective scattering rate τ−1

hot[kF] that selectively damps quantum oscillations originating
from orbits that are the product of Bragg reflection. The model is applied to the dimerization
in κ-(BEDT-TTF)2Cu(NCS)2 where we show that τ−1

hot[kF] is strongly dependent on the Fermi
momentum kF, being concentrated at ‘hot spots’ located on the Brillouin zone boundary.
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Strongly anisotropic scattering processes have been
proposed as an important factor in determining the un-
conventional physical properties of a variety of strongly
correlated electron systems, including the high temper-
ature superconductors [1], organic conductors [2, 3] and
heavy fermion antiferromagnets [4]. In three-dimensional
(3D) metals, magnetic quantum oscillation experiments
can provide a means for probing such anisotropies di-
rectly. When a magnetic field H is applied in a given
direction, only the extremal cyclotron orbits in momen-
tum space orthogonal to H contribute significantly to the
oscillation amplitude, enabling H orientation-dependent
studies to selectively study different parts of the Fermi
surface. Since the effective mass m∗[kF] and quasipar-
ticle scattering rate τ−1[kF] vary over the Fermi sur-
face, quantum oscillation experiments can enable their
orbital averages (m∗ = eB

2π

∮
dt ∝

∮
m∗[kF]dk‖ and

τ−1 = eB
2πm∗

∮
τ−1[kF]dt) to be determined as a func-

tion of the orientation of H, where B ≈ µ0|H| and kF is
the Fermi momentum.

Such studies have been successfully applied to cubic
materials with near spherical Fermi surfaces, enabling de-
tailed maps of m∗[kF] and τ−1[kF] to be extracted [4–6].
However, many of the more strongly correlated supercon-
ductors of interest today have layered electronic struc-
tures [1, 2, 7, 8] yielding Fermi surfaces that are highly
two-dimensional (2D). While ‘hot spots’ in which corre-
lations are enhanced due to spin fluctuations have been
predicted in both high temperature superconductors [1]
and organic conductors [3], their 2D geometry prohibits
a direct observation. The absence of closed extremal or-
bits when H is oriented within the layers implies that H
orientation-dependent quantum oscillation studies can-
not be used to extract information on the anisotropy of
m∗[kF] and τ−1[kF] within the layers. The finding of an
alternative means to verify (or falsify) the existence of
hot spots could have a decisive impact on attempts to
identify the appropriate theories for superconductivity.

In this paper we propose that magnetic breakdown

FIG. 1: A schematic of the Fermi surface of κ-(BEDT-
TTF)2Cu(NCS)2 before (dotted lines) and after (solid lines)
its reconstruction due to Bragg reflection at the Brillouin zone
boundary. The red dots indicate the proposed positions of
‘hot spots’ at the Brillouin zone boundary.

(MB), in which the magnetic field facilitates the tunnel-
ing of quasiparticles through band gaps, may provide an
alternative means for probing the existence of hot spots.
We consider the analogous case of incoherent Bragg re-
flection (IBR), which can cause τ−1[kF] to be strongly
concentrated at the Brillouin zone boundary as depicted
in Fig. 1. κ-(BEDT-TTF)2Cu(NCS)2 has the ideal Fermi
surface topology [7] to test the possibility of phase deco-
herence of quasiparticles undergoing Bragg reflection in a
weakly disordered crystalline lattice. IBR selectively de-
phases quasiparticles on the α orbit in Fig. 1 undergoing
Bragg reflection as opposed to those for which MB facil-
itates tunneling across the band gap 2∆g. MB enables
quasiparticles on the MB β orbit to follow the dotted
lines near the Brillouin zone boundary in Fig. 1, causing
them to be no longer affected by Bragg reflection. To
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explain the experimentally observed large ratio τ−1
α /τ−1

β
of the total orbitally averaged effective scattering rates
for the two orbits, we develop a model for an ‘effective’
scattering rate τ−1

hot[kF] due to IBR.
The experiments are conducted on 5 single crystals of

κ-(BEDT-TTF)2Cu(NCS)2 obtained from three different
crystal growth facilities, each crystal being of comparable
volume (∼ 0.1 mm3) [9]. When placed in the coil of a tun-
nel diode oscillator (TDO) circuit, the crystal’s finite in-
plane resistivity causes a perturbation of its inductance,
leading to a shift ∆f in resonance frequency [10]. Fig. 2
shows raw data obtained for all 5 samples in pulsed and
static magnetic fields. To ensure that estimates of m∗

and τ−1 are independent of the measurement technique,
comparisons are made with data obtained using conven-
tional four-wire resistance methods. In all cases, the re-
spective quantum oscillation frequencies Fα ≈ 600 T and
Fβ ≈ 3900 T and effective masses m∗

α ≈ 3.5 me and
m∗

β ≈ 7.0 me for the α and β orbits are found to be the
same to within experimental uncertainty, confirming that
all samples are of the same κ-(BEDT-TTF)2Cu(NCS)2
phase.

!

FIG. 2: Examples of the shift in the TDO frequency due
to the sample’s finite resistivity, displayed for five difference
samples T1 and T2, grown in Tsukuba, A1 and A2 grown in
Argonne and L1 grown in London.

Figure 3 compares ‘Dingle plots’ [18] for the α and β
orbits in which the oscillatory component of the in-plane
resistivity (determined by Fourier analysis) is renormal-
ized by the average background (non-oscillatory) mag-
netoresistance [19], and then subsequently divided by
the thermal damping factor R(T ) = X/ sinhX (where
X = 2π2m∗kBT/h̄eB, inserting values for m∗

α and m∗
β).

The logarithm of the remaining amplitudes have field de-
pendencies [11–17]

lnAα(B) = Cα + η lnB − πm∗
ατ−1

α /eB + ln[1− e−
B0
B ]

lnAβ(B) = Cβ + η lnB − (πm∗
βτ−1

β /e + 2B0)/B, (1)

where η = 0 for Shubnikov-de Haas oscillations in a
near ideal 2D layered metal [14] and Cα and Cβ are
constants. B0 = πm∗

β∆2
g/h̄eEF sin 2θ is the character-

istic MB field [18], where 2∆g is the band gap due

FIG. 3: Dingle plots of ln Aα and ln Aβ versus 1/B having
corrected for R(T ) and renormalized the amplitude of the
quantum oscillations by the background magnetoresistance,
together with fits to Equation (1) shown for B0 = 38 T (see
text).

to dimerization (which should be sample independent),
EF = h̄eFβ/m∗

β is the Fermi energy and 2θ is the angle
of Bragg reflection. Fits of Equation (1) to such Dingle
plots yield B0, τ−1

α and τ−1
β .

While there exists broad consensus regarding m∗
α and

m∗
β , estimates of B0 vary considerably throughout the lit-

erature [11–17], yielding B0 = 40 ± 6 T on including all
prior estimates obtained using η = 0 as for a 2D metal.
The large error reveals the difficulty associated with ob-
taining a convergence in B0 far from the ideal MB exper-
imental condition B % B0. We encounter a similar lack
of convergence on fitting Equation (1) to the α frequency
Dingle plots in Fig. 3, yielding B0 = 45 ± 22 T, 38 ± 8 T
and 45 ± 59 T for samples A1, A2 and L1 respectively,
or a culminated value of 39 ± 7 T. In the case of samples
T1 and T2, fits do not converge owing to the relatively
short range in magnetic field over which oscillations are
observed. To make allowance for the large error bars in
B0, we therefore plot τ−1

α and τ−1
β for a wide range of B0

(0 < B0 < 60 T) in Fig. 4a.
Information on the anisotropy of τ(kF) can be ex-

tracted because the quasiparticles on the α and β orbits
traverse different trajectories in k-space in Fig. 1. This
enables us to resolve different average rates τ−1

1 and τ−1
2

for quasiparticle on the quasi-1D and quasi-2D Fermi sur-
face sections respectively. If we choose to neglect the gap
by setting ∆g → 0, consideration of the proportionate
times t1 = 2π(m∗

β − m∗
α)/eB and t2 = 2πm∗

α/eB ≈ t1
spent by the quasiparticles on each section yields τ−1

α =
τ−1
2 and τ−1

β = (t1τ−1
1 +t2τ

−1
2 )/(t1+t2) ≈ (τ−1

1 +τ−1
2 )/2.

Hence

τ−1
α

τ−1
β

=
2τ−1

2

τ−1
1 + τ−1

2

≤ 2. (2)
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FIG. 4: (a) Scattering rates determined from Fig. 3 as a
function of B0. (b) The ratio τ−1

α /τ−1
β as a function of B0.

The dashed line represents τ−1
2 /τ−1

1 estimated using Equa-
tion (2). (c) Plot of (τα/τβ)2 with the solid lines representing

¯(τα/τβ)2 ± σ to estimate the value of B0 (dotted line) where
convergence occurs.

It is quite clear that no degree of anisotropy of τ(kF)
can explain values of the ratio τ−1

α /τ−1
β in Fig. 4b that

exceed 2. If we attempt to extract τ−1
2 /τ−1

1 (dashed
line in Fig. 4b) from the five-sample averaged τ−1

α /τ−1
β

(solid line), we find that τ−1
2 /τ−1

1 becomes asymptotic
for B0 ≈ 30 T: i.e. there is no viable τ−1

2 /τ−1
1 solution

for any of the fitted estimates of B0 that assume a 2D
Fermi surface [13–17].

Only by considering a finite ∆g can we explain
τ−1
α /τ−1

β > 2. The opening of such a gap enables quasi-
particles on the α and β orbits to take slightly different
paths in the vicinity of the Brillouin zone boundary in
Fig. 1. A strong enhancement of τ(kF) at the points
represented by red spots in Fig. 1 can only contribute
to τ−1

α because only these quasiparticles are modified by
Bragg reflection. On introducing an additional hot spot
scattering rate τ−1

hot that contributes only to the orbitally
averaged scattering time of the α orbit, we can revise
Equation (2) so that it becomes

τ−1
α

τ−1
β

≈
2(τ−1

2 + τ−1
hot)

τ−1
1 + τ−1

2

, (3)

which can now assume any value.
We propose IBR as the mechanism that can lead to

the additional τ−1
hot(kF) in the vicinity of the Brillouin

zone boundary. The standard theory of Bragg reflection
assumes the crystalline potential responsible for the gap
to remain periodic over all space [18]. In real materi-
als, however, the lattice is subject to imperfections due
to dislocations, cracks and voids that cause the period-
icities over long distances to become uncorrelated. This
leads to a loss of coherence of the Bloch waves over sim-
ilar distances, leading to finite mean free paths λ and
scattering times τ in accordance with the standard semi-
classical description. In addition to being subjected to
conventional point-like scattering processes, quasiparti-
cles with large momentum vectors that suffer diffraction
from the lattice will also be subjected to an uncertainty in
their momentum of order ∆h̄k = h̄/2ξ upon undergoing

Bragg reflection, where ξ represents the finite correlation
length of the lattice periodicity of interest. In the case of
κ-(BEDT-TTF)2Cu(NCS)2, it is the dimerization along
the c-axis that causes Bragg reflection. Its characteristic
vector K = [0, 2π/c, 0] intersects the large free electron-
like β hole orbit, leading to the opening of 2∆g and the
formation of the α orbit in Fig. 1.

One can conveniently treat the de-phasing of quasipar-
ticles in a semiclassical picture by considering an imag-
inary contribution to the Onsager phase and/or k-space
area. In the case of IBR, ∆h̄k introduces an imaginary
contribution

([aα] =
ikα

ξ
(4)

to the cross sectional area of the α orbit in k-space, such
that aα = )[aα] + ([aα], where i =

√
−1 and )[aα]

is its usual area (i.e. as in the limit ξ−1 → 0) which
has roughly the shape of a lens with a major axis length
2kα ≈ 0.52 2π/b ≈ 1/2.6 Å−1 [17]. The imaginary con-
tribution to the Onsager phase Φα due to IBR becomes

∂([Φα]
∂t

=
(

h̄

eB

)
∂([aα]

∂t
≡ i

2τhot[kF]
, (5)

enabling us to introduce an ‘effective’ scattering rate
τ−1
hot(kF). On calculating its orbital average, we obtain

τ−1
hot =

eB

2πm∗
α

∮
dt

τhot[kF]
=

h̄kα

πξm∗
α

. (6)

Should τ−1
1 ≈ τ−1

2 in Equation (3), then B0 ≈ 39 T
yields τ−1

hot ≈ τ−1
α − τ−1

β ≈ 0.5 × 1012 s−1 for the
best samples, corresponding to 2ξ ≈ 3000 Å ∼ 180 c,
which is of comparable magnitude to the mean free path
λ = h̄kβτβ/m∗

β ∼ 2000 Å for normal collision processes
that account for most of attenuation of the quantum os-
cillations originating from the β orbit, suggesting that
λ and ξ probably originate from common defects in the
lattice.

In order to show that τ−1
hot is concentrated at hot

spots, it is necessary to calculate the full dependence of
τ−1
hot(kF) on kF. According to the Fermi surface model in

Fig. 1, the free electron-like hole quasiparticle orbits in-
tersect each other approximately at right angles upon
their translation by K. It is therefore convenient to
model the local dispersion in the vicinity of the Brillouin
zone boundary by two orthogonal bands of the form

ε[k] =
h̄vβ√

2

(
kx ±

(
ky +

i

4ξ

))
, (7)

represented by dotted lines in Fig. 5a (for the limit
ξ−1 → 0). Here, they are defined with respect to kx = 0
and ky = 0 at the point of intersection, where i/2ξ is the
difference in ky between them due to the effect of a finite
correlation length. Hybridization yields

ε[k] =
h̄vβ√

2

(
kx ±

√
(
ky +

i

4ξ

)2 + K2
g

)
, (8)
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FIG. 5: (a) A plot of the Fermi surface topology in the vicinity
of the Brillouin zone boundary as a consequence of Bragg
reflection. (b) A plot of the calculated ratio τ−1

hot[kF]/τ−1
hot

according to the model as a function of the momentum vector
ky parallel to K.

where K−1
g = h̄vβ/

√
2∆g ≈ 35 Å for B0 ≈ 39 T. The

hybridized bands are represented by solid lines in Fig. 5a
(again, for the limit ξ−1 → 0). Action of the Lorentz
force h̄∂k/∂t = evF × B on quasiparticles moving at a
velocity vF[k] = h̄−1∇kε[k] in a magnetic field, yields

kF[t] ≈
[
±

√((eBvβ√
2h̄

)
t +

i

4ξ

)2

+ K2
g ,

(eBvβ√
2h̄

)
t, 0

]
.

(9)
The time evolution of the k-space area is approximately
given by ∂([aα]/∂t ≈ ∂|kF × ([kF]|/∂t where kF ≈
[kβ/

√
2, kβ/

√
2, 0] is the Fermi momentum vector and

kβ ≈
√

2kα. On evaluating ([kF] from Equation (9) in
the limit (eBvβ/

√
2h̄)t . 4ξK2

g , insertion of ∂([aα]/∂t

into Equation (5) yields, after some manipulation,

1
τhot[kF]

≈ π

4
kα(K2

g − 1/16ξ2)

(k2
y + K2

g − 1/16ξ2) 3
2

1
τhot

. (10)

Figure 5b shows the dependence of τ−1
hot[kF] on ky ac-

cording to Equation (10), revealing that ≈ 70 and 90 %
of the scattering intensity occur within |ky| < Kg and
|ky| < 2Kg, respectively. This shows quite clearly that
the bulk of the ‘attenuation’ occurs close to the Brillouin
zone boundary.

In summary, we propose a mechanism whereby a fi-
nite correlation length ξ of the weakly disordered crys-
talline lattice in κ-(BEDT-TTF)2Cu(NCS)2 causes inco-
herent Bragg reflection of quasiparticles at the Brillouin
zone boundary. This introduces an additional effective
scattering rate τ−1

hot[kF] that selectively damps quantum
oscillations originating from the α orbits in κ-(BEDT-
TTF)2Cu(NCS)2. This can cause the ratio of the or-
bitally averaged scattering rates τ−1

α /τ−1
β to exceed 2.

Model calculations show that τ−1
hot[kF] is strongly depen-

dent on the Fermi momentum kF, being concentrated at
‘hot spots’ located on the Brillouin zone boundary. IBR
may therefore explain a number of unusual experimental
results in disordered κ-phase salts in which oscillations
from the β MB orbit are clearly observed in quantum os-
cillation experiments, but where those from the α orbit
are vanishingly small or absent [20, 21].
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